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Amines are an important class of organic compounds, which can
be widely used as building blocks in organic chemistry. Common

@Epﬂ/ R@gR\ ’ EQ‘R

methods to generate amines include electrophilic or nucleophilic R PH ’H\Ru
addition to alkene$,ring opening of aziridine3, reduction of oc icl u-ci oc” u ‘co
amides? Staudinger reactiohpr Buchwald-Hartwig aminatior? CO c CO co ¢o
Chiral amines and amides can be produced by hydrogenation of 3 4 5aR=Ph
imines and enamingsalkylation of iminess amino hydroxylatior?, 5b R = p-F-CgHy

or reductive aminatiof. 5¢ R = p-MeO-CgH,4

Due to its simplicity, kinetic resolution (KR) using enzymes Figure 1. Racemization catalysts.
remains one of the easiest methods to produce chiral amines out_, .. ;

o ; . ; . Racemization of (S)-1-Phenylethylamine (1a)@
of racemic mixture$.lts major drawback is the maximum yield of

50%, thus limiting this method to an early transformation in a NH, NH, J\ J\
reaction sequence. To overcome this problem, methods to racemize cat. Ph |N Ph™ "NH
the nondesired enantiomer in situ have been developed (Scheme Ph Ph + Ph)\ + Ph)\
1). This has been achieved for amino acid derivatfvést
unfortunately, this so-called dynamic kinetic resolution (DKR) is (S)-1a rac-1a 6 7
only suitable to substrates which have an acidic proton close to selectivty
the stereogenic center. entry catalyst T(°C) ee (%)° for 1a (%)°
The racemization of unfunctionalized amines is much more 10 3 100 85 ~o8
difficult and requires harsher reaction conditidfhsyhich makes a od 4 100 46 ~98
racemization during enzymatic resolution difficult. This might be 3 5a 100 53 82
the reason only one example of DKR of amines has been reported 4 5b 100 36 25
so far, in which Pd/C was used as the racemization cathlyst. 5 5c 100 55 95
In this communication, we report on a highly efficient process ge gg 188 ég gg
for DKR of aminesl (Scheme 1). This chemoenzymatic DKR, g 5¢ 90 55 >08
which utilizes a ruthenium catalyst and a lipase, gives the of 5¢c 80 78 >908

corresponding amidesin high yields and high enantiomeric excess
from a racemic mixture.

Scheme 1. Dynamic Kinetic Resolution of Amines
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To figure out a mild racemization process, we tested a set of
ruthenium catalyst8—5 (Figure 1) for their ability to racemize
(9-1-phenylethylamine (99% e€)q) at elevated temperature and
monitored the loss of optical purity over time.

The mechanism of racemization consists of a combination
between dehydrogenation of the chiral amine and re-addition of
the hydrogen to the imin&.13

Catalysts3 and4, which have given high racemization rates for
secondary alcohols;15showed modest activities for racemization
of (9-1a resulting in enantiomeric excess values of 85 and 46%
after 24 h (Table 1, entries 1 and 2). Shvo’s catal$s) Ehowed
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a Conditions: 0.50 mmolS)-phenylethylamine, 0.02 mmol Ru source,
2 mL of toluene, 30uL of pentadecane as internal standard, 24 h.
b Determined as corresponding acetamides using chiral‘®&termined
by GC. 4 Activated with 0.02 mmol K®Bu. & With 0.02 mmol5c. f With
0.02 mmol5c, 8 mL of toluene.

an almost equal racemization rate, giving a reasonable enantiomeric
excess value of 53% (entry 3). Due to its slower rate of re-addition
of hydrogen, formation of condensation produg&nd7 occurred,
which lowers the selectivity of racemization (entry'3).

Since the racemization using Shvo’s catalgsl) (proceeds under
more neutral conditions, we tested different variantSain order
to figure out a more selective catalyst. With the fluorine-containing
complex5b, a lower enantiomeric excess of 36% is achieved (entry
4). This indicates that, for the dehydrogenation of the amine, an
electron-deficient transition metal catalyst is required. However,
the selectivity of this catalyst was far lower than that of catalyst
5a

The more electron-rich catalyst showed a much more selective
racemization thada and5b, and the overall racemization rate is
comparable to that of cataly®a (entry 5). We consider that,
although the dehydrogenation step is slowed, the rate of re-addition
of hydrogen is accelerated, thus reducing the lifetime of the free
imine.

To make the racemization process more efficient, we doubled
the amount of catalyst (entry 6). The enantiomeric excess value
dropped as expected, but the amount of the side produaitsl 7
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Table 2. Dynamic Kinetic Resolution of Primary Amines? In summary, we have developed a highly efficient protocol for
NH, 4 mol% 5¢ NHAc DKR of amines that, for the first time, allows a variety of
unfunctionalized primary amines to be transformed into one
R R CALB, Na;CO, >~0Ac R R1 enantiomer in high yield and high enantioselectivity.
toluene, 90 °C
rac-1a-k 2a-k
; Acknowledgment. The Swedish Research Council is gratefully
q h o/ \¢ . .
entry R/R yield (%)"  ee (%) acknowledged for financial support. J.P. thanks the DFG for a
1 2a Ph/Me 45 98 research grant.
2 2a Ph/Me 90 98
3 2a Ph/Me 85 98 Supporting Information Available: Experimental procedures and
4/ 2b 3-Me-CH, / Me 69 98 analysis of the products. This material is available free of charge via
5 2¢ 4-F-CH,/Me 83 99 the Internet at http://pubs.acs.org.
6 2d 4-Br-CH, / Me 78 99
7/ 2¢  4-OMe-CH,/Me 95 99
8  2f  2-Naphtyl/Me 80 >99.5 References
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